CuRL: Coupled Representation Learning of
cards and merchants to detect transaction frauds

Maitrey Gramopadhye*, Shreyansh Singh*, Kushagra Agarwal, Nitish
Srivasatava, Alok Mani Singh, Siddhartha Asthana, and Ankur Arora

AT Garage, Mastercard, India

Abstract. Payment networks like Mastercard or Visa process billions of
transactions every year. A significant number of these transactions are
fraudulent that cause huge losses to financial institutions. Conventional
fraud detection methods fail to capture higher-order interactions between
payment entities i.e., cards and merchants, which could be crucial to
detect out-of-pattern, possibly fraudulent transactions. Several works have
focused on capturing these interactions by representing the transaction
data either as a bipartite graph or homogeneous graph projections of the
payment entities. In a homogeneous graph, higher-order cross-interactions
between the entities are lost and hence the representations learned are sub-
optimal. In a bipartite graph, the sequences generated through random
walk are stochastic, computationally expensive to generate, and sometimes
drift away to include uncorrelated nodes. Moreover, scaling graph-learning
algorithms and using them for real-time fraud scoring is an open challenge.
In this paper, we propose CuRL and tCuRL, coupled representation learning
methods that can effectively capture the higher-order interactions in a
bipartite graph of payment entities. Instead of relying on random walks,
proposed methods generate coupled session-based interaction pairs of
entities which are then fed as input to the skip-gram model to learn entity
representations. The model learns the representations for both entities
simultaneously and in the same embedding space, which helps to capture
their cross-interactions effectively. Furthermore, considering the session
constrained neighborhood structure of an entity makes the pair generation
process efficient. This paper demonstrates that the proposed methods run
faster than many state-of-the-art representation learning algorithms and
produce embeddings that outperform other relevant baselines on fraud
classification task.

Keywords: Fraud detection - Payment network - Representation Learn-

ing - Skip-gram

1 Introduction

Detecting fraudulent transactions has been an ever-present problem in the pay-
ment industry with an average number of fraudulent transactions attempted per

* Both authors have equal contribution

2 Gramopadhye, M., Singh, S., et al.

merchant increasing at a rate of 34% per annum [25] and total worldwide fraud
losses projected to reach $35.67 billion in 2023 [28].

Conventional fraud detection solutions have moved from manually coded rules
to either traditional classification models or anomaly detection-based models [5],
[22], [26]. The use of deep learning models has further improved the performance
as they better capture the complex interactions between transaction features.
Given the sequential nature of transactions, LSTM and other seq2seq models
have previously been used for fraud detection. However, most of these methods
[9], [1] treat each transaction independently and fail to capture any interaction
information between the payment entities, which can be useful in detecting any
out of pattern transaction.

Recent works have focused on capturing the interaction between payment enti-
ties by leveraging graph-based methods for learning card and merchant represen-
tations which serve as useful features for downstream supervised tasks. However,
methods that consider the transaction network as a graph of homogeneous entities
[18], [12], [24], [27], capture merchant-merchant relation or card-card relation but
miss out on cross-entity interaction information. Whereas, most methods that
consider the heterogeneous nature of the transaction graph rely on generating
sequences through random walks [7], [4] which take into account the connections
of the entities but without the temporal information. Furthermore, these random
walks are stochastic and sometimes drift away to include uncorrelated nodes
thus generating sub-optimal representations. Moreover, these graph-learning
algorithms are computationally expensive, and scaling them for real-time fraud
detection is a big challenge.

In this paper, we propose CuRL, a scalable method of learning card and merchant
representations from a bipartite transaction graph. We explain how our method
effectively captures the cross-interactions between cards and merchants along with
their homogeneous interactions. Capturing these interactions allows our model
to retain more information in the entity embeddings, which in turn function as
richer features for downstream fraud detection. We adapt word2vec’s skip-gram
[19] as our embedding generation model and sample the neighborhood of a node
in the transaction graph to form coupled pairs (Card-Card, Merchant-Merchant,
Card-Merchant) to train the skip-gram. Additionally, as new transactions come
in, the model has to be periodically retrained. To facilitate this, our model focuses
on being lightweight and samples only the immediate neighborhood of a node. As
an extension to CuRL, we also propose tCuRL, a session-based sampling method
that further reduces the size of the neighborhood sampled for each node by
removing uncorrelated neighbors. Thus, further reducing the training time for the
embedding generation model and improving the quality of the representations.

We empirically compare our methods with other embedding generation methods
and show that embeddings generated by CuRL and tCuRL, when included as
features for fraud detection, beat all baseline methods. Moreover, since most of
the graph-based models are computationally expensive on large graphs, we also
introduce the embedding generation time as a metric while benchmarking.

CuRL: Coupled Representation Learning of Cards and Merchants 3

The organization of the paper is as follows. In Section [2] we cover the related
work done in the field of fraud detection and embedding generation, particularly in
the payment industry domain. Section [3talks about the synthetic data generation
and data preparation process. Section [4] describes the proposed approach for card
and merchant embedding generation. Section [5| has the details for the conducted
experiments and section [6] shows the comparison of our method against the
baselines. Section [7] concludes our work.

2 Related Work

Fraud detection has been an active area of research for a long time. We present
here an overview of the fraud detection techniques and methods that have
been applied in detecting different financial frauds. Bayes method [2], SVM [30],
decision trees and neural networks [26] have been applied extensively for solving
fraud detection problems. The general problem with above-mentioned models is
that they usually rely on hand-crafted features and manual feature engineering
to capture transaction information. Deep learning methods like [20], [31] use
autoencoders and denoising autoencoders to transform transaction features to
a lower dimension to classify the transaction as fraud. [I6] tried to solve the
fraud detection problem as a transaction sequence classification technique and
hence used an LSTM model, but it failed to also capture the payment entity
interactions.

To capture these interactions, several works have considered the transaction
network as a bipartite graph with cards and merchants as nodes. [14] was a graph-
based method for detecting fraudulent behavior in social media networks. [15], [8]
model fraud detection as graph-based anomaly detection. Other methods involve
creating node embeddings using the network structure. Earlier approaches for
node embedding generation involved using hand-crafted features based on network
properties [10], [I3]. [29], [2I] propose methods to analyze the transaction graph
and extract network features manually to use along with intrinsic transaction
features relevant for fraud detection task.

Recent advancements in representational learning for natural language process-
ing opened new ways of feature learning for discrete objects such as words. In
particular, the Skip-gram model [19] aims to learn continuous feature represen-
tations for words by optimizing a neighborhood preserving likelihood objective.
Inspired by the Skip-gram model, recent research established an analogy for
networks by representing a network as a “document” [24], [27]. The same way
as a document is an ordered sequence of words, one could sample sequences of
nodes from the underlying network and turn a network into an ordered sequence
of nodes. However, there are many possible sampling strategies for nodes, re-
sulting in different learned feature representations. A popular theme we noticed
in earlier works was that of using random walks to sample the neighbors of
a node. node2vec [12] performs a biased random walk to obtain the neighbor-
hood while DeepWalk [24] deploys a truncated random walk for social network
embedding, and metapath2vec [7] uses meta-path-based random walks. Unlike

4 Gramopadhye, M., Singh, S., et al.

Deepwalk, metapath2vec defines metapaths along which we want the walker to
move. Pin2Vec [18], originally created for bipartite graphs, forms homogeneous
graphs for each entity and trains separate skip-gram models for them. DeepTrax
[3] learns embeddings for cards and merchants from time-constrained random
walks taken on the transaction graph. HitFraud [4] forms a heterogeneous in-
formation network from the transactions and analyzes it to form graph-based
features by generating meta-paths on the graph. A limitation of such models is
that they often tend to drift away to include uncorrelated nodes while creating
the sequences. In practice, we also noticed that sampling a neighborhood using
random walks is a computationally expensive process. These observations are
evident in our results section (Section [6) as well. BigGraph [17] is another al-
gorithm for learning node embeddings for large graphs, with up to billions of
nodes and trillions of edges. It learns node embeddings through knowledge graph
implementation. BiNE, short for Bipartite Network Embedding [I1], generates
sequences that preserve the long-tail distribution of nodes in a bipartite graph.
It however uses a biased random walk generator to generate node neighborhood
for subsequent sequence generation.

3 Dataset

3.1 Description of Data

Pursuant to internal controls to protect data, confidentiality, and privacy, we don’t
use real transaction data for this paper. As this is an exploratory research, we have
used synthetically generated transaction data for our experiments, created by
applying SMOTE-NC [6] on real transaction data. Data created is synthetic and
cannot be traced back to any original transaction. Synthetic data was generated
for binary classes - fraud and non-fraud. It consists of 537k transactions, of which
1,100 transactions are fraudulent (0.2% of transactions). There are 125,019
unique cards and 220 unique merchants in the dataset. Our dataset mimics the
skewed distribution of cards found in transaction data. Several cards have just
1-2 transactions whereas a few cards have many transactions.

From the dataset, we only use the card number and merchant ID to generate
embeddings for cards and merchants. Note that the card numbers and merchant
IDs used are from the synthetic dataset and not the real data. The same dataset
is used for all the experiments and the embeddings generated are then used to
train the model for the downstream task of fraud detection.

3.2 SMOTE-NC

SMOTE-NC (Synthetic Minority Oversampling Technique) [6] is a data augmen-
tation technique for generating synthetic data. It is a variant of SMOTE and is
used when the data to be generated has continuous as well as non-continuous
features. Since we need to generate synthetic data for both the classes, we train
SMOTE-NC on two different datasets, one for each class.

CuRL: Coupled Representation Learning of Cards and Merchants 5

Statistic|txn_amt|30d_avg|14d_avg Statistic|txn_amt|30d_avg|14d_avg
count| 538,125| 538,125 538,125 count| 538,125 538,125| 538,125
mean 46.31 0.86 0.82 mean 46.28 0.87 0.83

std 150.45 0.27 0.34 std 144.30 0.24 0.30

min 0.01 0.00 0.00 min 0.01 0.00 0.00

25% 8.97 0.88 0.83 25% 9.08 0.87 0.82

50% 16.98 1.00 1.00 50% 17.02 0.98 0.99

5% 43.96 1.00 1.00 75% 43.95 1.00 1.00

max|44,418.73 1.00 1.00 max|36,661.17 1.00 1.00

Table 1: Distribution of transaction Table 2: Distribution of transaction

amount in real data with 30-day and amount in synthetic data with 30-day
14-day average and 14-day average

3.3 Distribution Similarity

Distribution similarity between the synthetic data and real data will ensure that
a model performing well on synthetic data, will perform well on the real data
as well. Due to privacy concerns, we cannot compare the two datasets at the
individual data point level but in Tables [If and [2] we show the comparisons on an
aggregate level. Furthermore, we also use the Evaluation Framework of SDV [23]
to calculate the quality of the synthetic data. The Chi-squared test on the two
datasets gives a value of 0.998 and the Kolmogorov—Smirnov test gives a value of
0.885. These metrics show that the two datasets are very similar.

4 Methodology

4.1 CuRL

The CuRL framework, visually explained in the system architecture Figure [I]
generates Card and Merchant embedding by a novel strategy of inducing Card-
Card, Merchant-Merchant, and Merchant-Card pairs from bipartite transaction
graph. These pairs of C-M, M-M and C-C are then fed to word2vec based
skip-gram model to learn entities representations in the same embedding space.

To create M-M, C-M and C-C pairs, joint neighborhood (N;) is calculated
collectively for card (C;) and Merchant (M), for each transaction (7;). As shown
in equation [2 V; is defined as the union of the individual neighborhoods of C;
(NE) and M; (NM). From equation |1} N consists of all merchants that C;
transacted with, in an analysis window w, immediately before and after T;, i.e.
w merchants the C; transacted with each before and after 7;. Similarly, NM
consists of the cards which transacted with M, immediately before and after
T;, within the analysis window. Also, relationship between C; and M; is also
included in N;. After calculating the joint neighborhood N;, all nodes in N; are
paired with both C; and M; to train the skip-gram model. We consider M}, to
be the position of M; in its own neighborhood. Similarly for Cj and C;.

6 Gramopadhye, M., Singh, S., et al.

Pairs formed

Transactions Neighborhood generation module | ‘\

(M M),[(My 3, M), (M-M),

(M1, M), (M M) (Ciip M), |- Skip-Gram
(Ceay M), (G, M), (Cyp, M),
(Ceowws M), (My,,, C), (M 1:C)
(M;, C), (My, C), (Mg, Gy,
(Cew €, (€, €, (C, €,
(Ciars €, (G C) 7 MM

_-{d) E
(M., M‘)“Mi: M), (M5, M),
" (Cexo M), (C M), (Giar M), | | |«Embedding
(Cowwo M), (M4, C), (M, C),)
(M5, C), (Cs, €, (G, C),
(@) Gl (Cor). (Ciour C)
Time threshold (e)

To
T

—

Time | T | Merchant (M) card (C)

Fig.1: CuRL/tCuRL embedding generation process: (a) For each trans-
action Tj, the pair of card C; and merchant M;, is selected (b) The neighborhood
generation module constructs the joint neighborhood of the card and merchant
(¢) The time threshold used in tCuRL, helps in removing uncorrelated interactions
by limiting the card and merchant neighborhood to a dynamic time window (d,e)
card — card, card — merchant, and merchant — merchant pairs are formed from
the collected neighborhood (f) The skip-gram model is trained on these coupled
pairs to predict M; and C; from their neighborhood to learn cross-entity as well
as homogenous relationships. The model weights are then used as embeddings
for the cards and merchants

N = |J My and NM= | Oy (1)

—w<j<w —w<j<w

And the pairs formed for transaction T; are,
{(C.a); Vo € N} J{(M, 2); ¥ € N3} (3)

As shown in equation [3] CuRL includes both 1st and 2nd order neighbors to
form card — card, card — merchant, merchant — merchant entity pairs which
helps in capturing historic interaction pattern of entities involved.

4.2 tCuRL

Optimizing the analysis window to derive card and merchant neighborhoods
is essential in building a robust solution. Hence, session-based CuRL is intro-
duced in this paper named tCuRL which decides on analysis window (henceforth
called session) based on card’s current spend frequency. Session constrained card
and merchant neighborhood for a transaction would ensure that only relevant
interactions are captured between entities and the performance of the model
can be improved. To explain this further, let us again consider Nic in equation
for card C. There is a possibility that difference between the time of the

CuRL: Coupled Representation Learning of Cards and Merchants 7

Algorithm 1: The CuRL Framework
Result: Vector representations of Payment Entities
for Transaction T;; V0 < i <n do
M; = T;(Merchant);
Ci = Ti (Card);
NM = neighborhood(M;);
#The cards M; transacts with, immediately before and after T;;
NE = neighborhood(C;);
#The merchants C; transacts with, immediately before and after T;;
NM = Time-threshold(N}M);
NE = Time-threshold(NE);
All cards/merchants that transacted with M; /C; before or after the
time-threshold from T; are removed (this step is skipped in CuRL);
N; = NZM UN’LC 5
PM = {(M;,x) V2eN;};
PE = {(Ci,x) YzEN;};
end
Pairs = U1<i<n P;;
Embeddingsizi skipgram(Pairs);
#The skip-gram model is trained to learn the entity embeddings;

transactions between C' and M}, and between C' and My is large. Keeping both
these merchants in the same card neighborhood would add noise and force the
model to learn spurious interactions. To incorporate this tCuRL uses a dynamic
analysis window, which ensures that in such a case, M}, and M}, would never
come together in the same neighborhood. While calculating the dynamic analysis
window we don’t consider the merchants because, in the transaction network,
merchants usually have a much higher degree than cards and also have a more
uniform timestamp difference distribution. We found that a static window size
works best for calculating merchant neighborhoods. Algorithm [I| provides the
pseudo-code for CuRL and tCuRL.

5 Experiments

In this paper, we benchmark CuRL and tCuRL with five baseline algorithms of
entity representation learning and evaluate the performance of the embeddings
in fraud detection task on the metrics - AUCPR and F; score. The paper also
benchmarks models on running time to create entity embeddings.

5.1 Baseline Models

The size of embeddings is kept the same i.e., 128 in all the baseline models for
fair benchmarking. After we create the embeddings for the cards and merchants,

8 Gramopadhye, M., Singh, S., et al.

we use an internal classification tool to classify the transactions into fraud and
non-fraud. The features fed into the fraud classification task are - card embedding
and merchant embedding.

node2vec - The paper uses the StellarGraph implementatiorﬂ of node2vec [12]
in the experiments. The maximum length of random walk is set to 50 with 10
random walks per node. The skip-gram model uses a window size of 20, the min
count is set to 0 and the number of epochs is set to 50. The return hyperparameter
p is taken as 0.5 and the in-out hyperparameter q is set to 2.

metapath2vec - The paper again uses the StellarGraph implementation® of
metapath2vec [7]. For the experiments, we consider the metapaths as card-
merchant-card and merchant-card-merchant and define the maximum length of
the random walk to be 50 with 2 random walks per root node. The word2vec
based skip-gram model is used with a window size of 20, the min count set to 0
and the number of epochs is 50.

BigGraph - Although the dataset considered for the experiments is relatively
small, BigGraph [17] is taken into consideration since transaction networks involve
billions of transactions. For the experiments, we use the default parameters as
used by the authors in the official code repositoryﬂ of the paper. The learning
rate is set to 0.001 and the model is run for 30 epochs.

LINE - For learning the node representations using LINE we use the implemen-
tation provided by the author&ﬂ The negative sample size is set to 5 and 0.025
is taken as the starting learning rate. The order-1 and order-2 embeddings are
concatenated as recommended by the authors.

BiNE - We used the official implementation provided by the authorsﬂ The
default parameters are used i.e, 32 maximum walks per vertex, learning rate of
0.01, walk-stopping probability of 0.15, and window size of 5.

Pin2Vec - This is our own implementation of Pin2Vec [I8] as we could not find
any implementation by the authors. We trained the skip-gram models for 50
epochs to generate embeddings. We use a window size of 5 to pick neighbors from
the sequences generated, to train the skip-gram models. We also use a timed
approach with Pin2Vec and we name it tPin2Vec. tPin2Vec uses a variable
window size for picking neighbors from sequences to train the skip-gram model.
The calculation of the variable window sizes is similar to what we described in
Section [£.2] for tCuRL. For experimentation purposes, tPin2Vec uses the same
parameters as Pin2Vec.

5.2 Proposed Models

CuRL generates pairs of cards and merchants which are used to train a single
skip-gram model which learns the embeddings for cards and merchants. To get
the best possible results we trained the skip-gram model for 30 epochs (ep) to

! https://github.com/stellargraph/stellargraph

2 https://github.com/facebookresearch/PyTorch-BigGraph
3 https://github.com/tangjianpku/LINE

4 https://github.com/clhchtcjj/BiNE

https://github.com/stellargraph/stellargraph
https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/tangjianpku/LINE
https://github.com/clhchtcjj/BiNE

CuRL: Coupled Representation Learning of Cards and Merchants 9

generate embeddings of length 128 (len). We use a window size of 15 (ws) to pick
entity neighbors from the transaction graph. The min count parameter (minc)
of the skip-gram model was set to 3.

tCuRL incorporates a time threshold to have a variable window size for forming
pairs to train the skip-gram model. The cards are grouped into bins based on the
number of transactions they are making. Further, for each bin, a time threshold
is decided for the time between two transactions in a session, in a way such
that 95% of the consecutive transactions have a time difference lesser than the
threshold. We tune this percentage as a hyperparameter, perc_thresh. The other
parameters have the same values as CuRL.

6 Results

All the models were trained on a machine with a 2.6 GHz 6-Core Intel Core
i7 processor with 16 GB of RAM. The runtimes are given in Table [4] while
Table [3| gives the fraud detection metrics for the different algorithms. Section [6.1
compares our models’ performance with the baseline models. In Section we
show the effect of the various parameters of the tCuRL model on its performance.

Algorithm |AUCPR|F1 Score|Precision|Recall Algorithm Time
metapath2vec| 0.156 0.212 0.298 0.113 metapath2vec| 42 minutes
node2vec 0.159 0.230 0.267 0.158 node2vec 77 minutes
BigGraph 0.771 0.833 0.890 0.770 BigGraph 3 minutes
LINE 0.777 0.823 0.865 0.792 LINE 50 seconds
BiNE 0.776 0.826 0.865 0.790 BiNE 20 hours
Pin2Vec 0.764 0.820 0.890 0.760 Pin2Vec 50 seconds
tPin2Vec 0.782 0.817 0.870 0.770 tPin2Vec |2.33 minutes
CuRL 0.797 0.829 0.878 0.785 CuRL 3 minutes
tCuRL 0.847 0.846 0.920 0.783 tCuRL 3.13 minutes

Table 3: Fraud classification results contrasting Table 4: Comparing em-

CuRL and tCuRL with the baseline methods on bedding generation time of

relevant metrics CuRL and tCURL with
the baseline methods

6.1 Fraud Detection

We found that tCuRL outperforms all the baselines in terms of the AUCPR score.
In general for imbalanced datasets like ours, AUCPR gives a good measure of
performance. For the sake of comparison, we also present the results on other
metrics as well. Methods that use simple random walks to generate sequences like
metapath2vec and node2vec perform quite poorly. BINE also employs random
walks but preserves entity relationships and is able to achieve better performance.

10 Gramopadhye, M., Singh, S., et al.

However, these methods require a lot of time to generate embeddings. BigGraph,
Pin2Vec, and tPin2Vec are efficient in generating embeddings but they fail to
capture the cross-interactions between cards and merchants. The embedding
generation process using LINE is also efficient but it learns the embeddings for first
and second order neighbors separately rather than learning a single embedding.
From Table [3] we see that CuRL and tCuRL outperform all the baseline models
and also have an efficient embedding generation process, as shown in Table [4]

Furthermore, to show the quality of our generated embeddings, we use t-SNE
to plot the transaction embeddings from tCuRL in a two-dimensional space.
The transaction embeddings are the concatenation of the card and merchant
embeddings involved in the transaction. It can be seen in Figure [2[that most of
the fraudulent transactions separate out from the non-fraudulent transactions,
which makes it easier for the classification model to identify the frauds.

fraud_indicator &
100 e fraud -
non-fraud .) .

.
k23

-100

-100 -50 0 50 100
X

Fig. 2: t-SNE plot of the transaction embeddings from tCuRL (concatenation of
card and merchant embeddings) mapped to a 2-D space.

6.2 Parameter Sensitivity

CuRL and tCuRL involve many parameters and this section examines how changing
them affects the performance. Since CuRL and tCuRL share all parameters except
the percentage threshold and Table [3| shows that tCuRL outperforms CuRL, we
limit our parameter sensitivity experiments to tCuRL.

Table [5| shows that a smaller embedding size in the case of our model gives
a better AUCPR. However, we keep an embedding size of 128 as transaction
datasets are much larger in practice and a larger embedding size can store more
information. This also helps to maintain uniformity among experiments. Similarly,
Table [6] shows that increasing the window size improves the AUCPR for the
model. This can be because increasing the window size while generating pairs
allows the model to learn from a larger entity neighborhood. From Table[7] we see
that the AUCPR of the model is highest at the middle min count values. A low

CuRL: Coupled Representation Learning of Cards and Merchants 11

len |AUCPR|F; Score|Precision|Recall

16 0.789 0.821 0.874 0.774

32 0.786 0.816 0.874 0.774

64 | 0.778 0.816 0.865 0.772

128 | 0.784 0.819 0.864 0.778

256 | 0.766 0.824 0.894 | 0.764

512| 0.780 0.823 0.876 0.776

Table 5: Effect of varying embedding length on performance metrics
ws |AUCPR| F; |Precision|Recall| |minc|AUCPR|F; Score|Precision|Recall
Score 1 0.784 0.819 0.864 0.778

2 0.773 0.819 0.865 0.778 2 0.775 0.811 0.861 0.766
3 0.761 |0.813| 0.867 0.765 3 0.789 0.825 0.879 0.777
5 0.784 |0.819| 0.864 0.778 4 0.783 0.828 0.891 0.773
7 0.778 0.833 0.909 0.769 5 0.774 0.811 0.859 0.768
10| 0.782 [0.819| 0.863 |0.779 6 0.788 0.823 0.883 0.771
12 0.780 |0.828 0.904 0.764 8 0.766 0.822 0.863 0.785
15| 0.784 |0.821 0.883 0.767 10 0.765 0.829 0.885 0.780

Table 6: Effect of varying window
size for neighborhood calculation

Table 7: Effect of varying minimum
count of cards for skip-gram training

ep |AUCPR/|F1 Score|Precision|Recall| | perc. |AUCPR| F: |[Precision|Recall
5| 0.765 0.816 0.862 | 0.774 | |thresh Score

10| 0.767 0.816 0.864 0.773 60 0.780 |0.816 0.864 0.774
15| 0.781 0.823 0.873 0.778 65 0.778 |0.823 0.947 0.801
20| 0.783 0.819 0.864 0.778 70 0.787 |0.820 0.872 0.774
25| 0.784 0.819 0.864 0.778 75 0.790 |0.819 0.864 0.778
30| 0.787 0.823 0.876 0.776 80 0.784 |0.819 0.864 0.778
35| 0.782 0.820 0.869 0.776 85 0.790 |0.834| 0.905 0.774
40| 0.778 0.824 0.867 0.783 90 0.802 |0.836| 0.868 0.805
45| 0.778 0.819 0.893 0.756 95 0.810 |0.833 0.879 0.792
50| 0.786 0.819 0.876 0.769 100 0.797 |0.829 0.878 0.785

Table 8: Effect of varying number
of epochs for skip-gram training

Table 9: Varying the percentage of
transactions that have time intervals
below the threshold

min count can lead to a lot of noise during training. Whereas, a large min count is
also not acceptable as we could be missing out on important entity relationships.
It can be seen from Table [§] that the AUCPR of the model drops when the
number of epochs is too large, which could be because of the model overfitting
on the training data. The results in Table [9] show that a higher AUCPR score
is obtained on increasing the percentage threshold. Note that CuRL is the case
when the percentage threshold is 100% and time between transactions is not

12 Gramopadhye, M., Singh, S., et al.

considered. Also, it can be observed that reducing the percentage threshold to
just 95% from 100% effectively removes the noise and improves the AUCPR
considerably. Reducing it further leads to loss of information.

7 Conclusion

In this paper, we have proposed a method to generate embeddings for cards
and merchants from transaction data. Our method introduced a novel technique
for creating pairs of cards and merchants, that effectively captured their cross
interactions, before applying the skip-gram model to generate the embeddings.
We also introduced a dynamic session-based approach to reduce the noise in the
embedding generation process by limiting the entity neighborhoods created while
generating pairs. We also discussed our model’s scalability and efficiency, while
processing large number of transactions, and have compared the results with the
baselines.

Future work directions could include testing the performance of our generated
embeddings for other financial downstream tasks. Additional card and merchant
features (geographical data, spend information) can also be incorporated in the
embedding generation process. Researchers can also look into a more extensive
hyperparameter testing for the experiments. Furthermore, efficient dynamic
updation of embeddings is also something that can be looked into.

References

1. Akhilomen, J.: Data mining application for cyber credit-card fraud detection system.
In: Perner, P. (ed.) Advances in Data Mining. Applications and Theoretical Aspects.
pp. 218-228. Springer Berlin Heidelberg (2013)

2. Bahnsen, A.C., Stojanovic, A., Aouada, D., Ottersten, B.: Improving credit card
fraud detection with calibrated probabilities. In: SDM (2014)

3. Bruss, C., et al.: DeepTrax: Embedding graphs of financial transactions. 2019 18th
IEEE International Conference On Machine Learning And Applications (2019)

4. Cao, B., Mao, M., Viidu, S., Yu, P.S.: Hitfraud: A broad learning approach for
collective fraud detection in heterogeneous information networks. In: 2017 IEEE
International Conference on Data Mining (ICDM). pp. 769-774 (2017)

5. Chandola, V., et al.: Anomaly detection: A survey. ACM Comput. Surv. (2009)

6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research (2002)

7. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning
for heterogeneous networks. In: KDD ’17. pp. 135-144. ACM (2017)

8. Eberle, W., Holder, L.: Mining for insider threats in business transactions and
processes. In: 2009 IEEE Symposium on Computational Intelligence and Data
Mining. pp. 163-170 (2009)

9. El hlouli, F.Z., Riffi, J., et al.: Credit card fraud detection based on multilayer
perceptron and extreme learning machine architectures. In: International Conference
on Intelligent Systems and Computer Vision (2020)

10. Gallagher, B., Eliassi-Rad, T.: Leveraging label-independent features for classi-
fication in sparsely labeled networks: An empirical study. In: Lecture Notes in
Computer Science: Advances in Social Network Mining and Analysis. Springer

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

CuRL: Coupled Representation Learning of Cards and Merchants 13

Gao, M., Chen, L., He, X., Zhou, A.: BiNE: Bipartite network embedding. SIGIR
’18, Association for Computing Machinery (2018)

Grover, A., Leskovec, J.: Node2vec: Scalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16, Association for Computing Machinery (2016)
Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., Tong, H., Faloutsos,
C.: It’s who you know: graph mining using recursive structural features. KDD
Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: Fraudar:
Bounding graph fraud in the face of camouflage. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
Huang, D., Mu, D., Yang, L., Cai, X.: Codetect: Financial fraud detection with
anomaly feature detection. IEEE Access 6, 19161-19174 (2018)

Jurgovsky, J., Granitzer, M., et al.: Sequence classification for credit-card fraud
detection. Expert Syst. Appl. (2018)

Lerer, A., Wu, L., et al.: PyTorch-BigGraph: A Large-scale Graph Embedding
System. In: Proceedings of the 2nd SysML Conference. Palo Alto, CA, USA (2019)
Liu, D.C., Rogers, S., Shiau, R., Kislyuk, D., Ma, K.C., Zhong, Z., Liu, J., Jing, Y.:
Related pins at pinterest: The evolution of a real-world recommender system. In:
Proceedings of the 26th International Conference on World Wide Web Companion
Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word
representations in vector space

Misra, S., Thakur, S., Ghosh, M., Saha, S.K.: An autoencoder based model for
detecting fraudulent credit card transaction. Procedia Computer Science (2020),
International Conference on Computational Intelligence and Data Science

Molloy, I., Chari, S., et al.: Graph analytics for real-time scoring of cross-channel
transactional fraud. In: Financial Cryptography and Data Security (2017)
Moschini, G., Houssou, R., Bovay, J., Robert-Nicoud, S.: Anomaly and Fraud
Detection in Credit Card Transactions Using the ARIMA Model (2020)

Patki, N., Wedge, R., Veeramachaneni, K.: The Synthetic Data Vault. In: 2016
IEEE International Conference on Data Science and Advanced Analytics (DSAA)
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online Learning of Social Repre-
sentations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2014)

Salim Hasham, R.H., Wavra, R.: Combating payments fraud and enhancing cus-
tomer experience. https://mck.co/2Qi4ead (2018)

Shen, A., et al.: Application of Classification Models on Credit Card Fraud Detection.
In: International Conference on Service Systems and Service Management

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web (2015)

The Nilson Report, Issue 1164: Card Fraud Worldwide 2010-2027 - Card Fraud
Losses Reach $27.85 billion. https://bit.1ly/3uZ1v4D (2019)

Van Vlasselaer, V., et al.: APATE: A novel approach for automated credit card
transaction fraud detection using network-based extensions. Decision Support
Systems (2015)

Zheng, E.H., Zou, C., Sun, J., Chen, L., Li, P.: Svm-based cost-sensitive classification
algorithm with error cost and class-dependent reject cost. 2010 Second International
Conference on Machine Learning and Computing pp. 233-236 (2010)

Zou, J., Zhang, J., Jiang, P.: Credit card fraud detection using autoencoder neural
network (2019)

https://mck.co/2Qi4ead
https://bit.ly/3uZ1v4D

	CuRL: Coupled Representation Learning of cards and merchants to detect transaction frauds

