MeTGAN: Memory efficient Tabular GAN for
high cardinality categorical datasets

Shreyansh Singh, Kanishka Kayathwal, Hardik Wadhwa, and Gaurav Dhama

AT Garage, Mastercard, India
{shreyansh.singh,kanishka.kayathwal ,hardik.wadhwa,gaurav.dhama}@mastercard.com

Abstract. Generative Adversarial Networks (GANs) have seen their use
for generating synthetic data expand, from unstructured data like images
to structured tabular data. One of the recently proposed models in the
field of tabular data generation, CTGAN, demonstrated state-of-the-art
performance on this task even in the presence of a high class imbalance
in categorical columns or multiple modes in continuous columns. Many
of the recently proposed methods have also derived ideas from CTGAN.
However, training CTGAN requires a high memory footprint while dealing
with high cardinality categorical columns in the dataset. In this paper, we
propose MeTGAN, a memory-efficient version of CTGAN, which reduces
memory usage by roughly 80%, with a minimal effect on performance.
MeTGAN uses sparse linear layers to overcome the memory bottlenecks
of CTGAN. We compare the performance of MeTGAN with the other
models on publicly available datasets. Quality of data generation, memory
requirements, and the privacy guarantees of the models are the metrics
considered in this study. The goal of this paper is also to draw the
attention of the research community on the issue of the computational
footprint of tabular data generation methods to enable them on larger
datasets especially ones with high cardinality categorical variables.

Keywords: Synthetic Data Generation - Generative Adversarial Net-
works - Tabular Data - Privacy

1 Introduction

Despite the growing interest in areas like natural language processing and com-
puter vision, the type of datasets have diversified considerably. However, tabular
datasets remain prominent for a number of scenarios like patient records, banking
records, census data, etc. Often, due to privacy concerns, these datasets cannot
be used to train machine learning models as that would make it easy for attackers
to extract details about the original data. Furthermore, the lack of sufficient real
data for training the machine learning models also creates a need for synthetic
data generation methods.

Tabular data usually consists of both numerical and categorical columns. Real-
world numerical data is typically multi-modal and categorical columns are often
imbalanced. These two issues make synthetic tabular data generation a difficult

2 S. Singh et al.

task. GANs have shown a promising ability to model arbitrary distributions
in the data for a variety of datasets. In this paper, we focus primarily on the
GAN-based methods for tabular data generation. Some of the recently proposed
and well known models in the synthetic tabular data generation domain include
medGAN [2], tableGAN [10], TGAN [20], CTGAN [I9] and cWGAN [4]. We
compare the performance of these models on two publicly available datasets from
the UCI Machine Learning repository namely the Adult [7] (classification data)
and News [I5] (regression data) datasets. CTGAN was found to be the best
performer among these models. The Adult and News datasets although widely
used in synthetic data generation papers like [19], [10], do no have high cardinality
categorical columns and hence are not very close to what large datasets would
look like. CTGAN creates a one-hot encoded representation for all the categorical
columns in the conditional vector and uses a residual connection in the first layer
of the generator. This creates a memory bottleneck, mainly while dealing with a
large number of categories in the dataset.

As demonstrated in the experiments section, it was observed that for the
Loan [I8] dataset, CTGAN has a very high memory footprint. To overcome this,
we propose a new architecture MeTGAN, wherein we use a sparse linear layer for
the conditional vector in both the generator and discriminator. Additionally, we
remove residual connections in the first layer of the generator. This helps to get
an 80% reduction in memory usage that makes it easy to generate synthetic data
for large datasets. The proposed model performs at par with CTGAN across all
the datasets. To summarise, the paper’s contributions are:

— Propose a memory-efficient tabular GAN architecture to handle datasets with
high cardinality categorical columns with at par performance as compared to
the current state of the art algorithms

— A thorough comparison of the current existing GAN-based tabular data gen-
eration methods with MeTGAN on several metrics, machine learning efficacy,
distribution similarity, privacy guarantees, and the memory requirements.

— Draw the attention of the research community to the computational require-
ments of such models and motivate researchers to work towards solutions.

— Additional details regarding the paper are available at: https://github,
com/shreyansh26/MeTGAN-Paper!

2 Related Work

Initial contributions in the field of tabular data generation treated each column
in the table as a distinct random variable and their distributions were modeled
separately. [I4] used decision trees to model the categorical variables while [21]
used Bayesian networks. In [3] spatial data was modeled using trees. Continuous
variables that were non-linearly related were modeled using copulas in [IT].
Later, the use of GANs [5] started to emerge in the domain of synthetic
tabular data generation. medGAN [2] uses an autoencoder with a GAN model to
generate medical patient records with heterogeneous non-time-series continuous
and/or binary data. tableGAN [10] uses a DCGAN [I3] based architecture for

https://github.com/shreyansh26/MeTGAN-Paper
https://github.com/shreyansh26/MeTGAN-Paper

MeTGAN: Memory efficient Tabular GAN 3

synthetic data generation. TGAN [20] uses an LSTM based generator and an
MLP based discriminator while CTGAN [I9] uses a conditional generator and
training-by-sampling to deal with the imbalanced categorical columns. CTGAN
also uses mode-specific normalization to handle the non-Gaussian and multi-
modal distribution of continuous data. The architecture integrates PacGAN [g]
and uses Wasserstein loss with gradient penalty [6]. cWGAN [4] models the
data using self-conditioning in the generator and uses crosslayers for both the
generator and the discriminator to explicitly calculate the feature interactions.
Additionally embedding layers are used for dimensionality reduction and better
representative power. In [19], in addition to CTGAN, the authors also propose a
variational autoencoder-based approach, TVAE for synthetic tabular data gener-
ation. CrGAN-Cnet [9] uses GAN to perform synthetic airline passenger name
record generation. CTAB-GAN [22] is a very recent paper that can effectively
model columns that have a mix of continuous and categorical data. It introduces
the information loss and classification loss to the conditional GAN. We were not
able to reproduce the CTAB-GAN paper ourselves correctly and hence we do not
include the results in our paper. However, from their paper, we understand that,
architecturally, CTAB-GAN will not be more memory efficient than CTGAN, so
not including the model in this paper will not affect the goal of our study.

3 Proposed Model

In this section, we present the MeTGAN architecture, which is designed to
overcome the shortcomings of CTGAN on datasets with high cardinality. The
conditional vector in CTGAN is sparse, most of its values are zero, ones being
only at the places corresponding to the conditioned columns of the real data.
This conditional vector is concatenated with a noise vector before passing it as
an input to the generator. Similarly, in the case of the discriminator, the input
is the concatenation of the conditional vector with either the generated data or
with the real data. For datasets with high cardinality, this concatenated vector
becomes large and leads to a memory bottleneck. Moreover, in the generator, an
addition of a residual layer over this large vector further escalates the memory
requirements.

In MeTGAN (architecture shown in Figure[l)), we address the above-mentioned
issues as follows: First, we do not concatenate the conditional vector, neither
with the noise vector in the case of the generator nor with real/generated data
in the case of the discriminator. Second, we remove the first residual layer of
the generator. In the case of the generator, the noise vector is passed through
a linear layer and the conditional vector is passed through a separate sparse
linear layer. The outputs from these layers are concatenated before passing it to
the next layer. For discriminator, the real/generated data is passed through a
fully connected layer with LeakyReLU activation and Dropout, whereas for the
conditional vector the fully connected layer is replaced by a sparse linear layer.
The outputs of these layers are also concatenated before passing it to the next
layer.

4 S. Singh et al.

l cond I [rl@-I@'n] [COndlﬂai.GBcondn]

[FC layer

i

Sparse Linear layer]

[FC layer][Sparse Linear layer]

) (
[LeakyRelU, ,] [LeakyRelU,,]
) (

69 (Dropouty s

Dropout, 5]

FC layer $
RelU FC layer
LeakyReLU, ,
J4AY

[tanh] [gumbeIM] [gumbel,u]

a B d Score

/

Fig. 1: Architecture of the generator (left) and discriminator (right) of MeTGAN.
@ indicates concatenation. The input z to the generator is the noise vector
sampled from a standard multivariate normal distribution. cond is the conditional
vector that represents the column name and value that the generator conditions
upon. For the discriminator, a PacGAN [8] framework with n samples in each
pac is used. 71,...,7, is the real or generated data which is passed through
the discriminator, and condy, ..., cond, is used for the conditional vector. The
outputs 3, « indicate the one-hot vector of the mode and the value within the
mode for continuous columns and d is the one-hot vector of the discrete values
for categorical columns. The Score from the discriminator is the critic score
indicating the realness of the input data given the conditional vector.

4 Datasets

For the comparison of the models, two publicly available datasets were considered.
The Adult dataset and the News dataset. The objective of taking these two
datasets is that 1) They are widely used in synthetic tabular data literature
[19], [20], [T0] and 2) the Adult dataset poses a classification problem and the
News dataset presents a regression problem, which can help to better analyze
the performance of the models on the two major facets of machine learning on
tabular data - regression and classification. The statistics associated with the
datasets are shown in Table [I1

To compare the performance of CTGAN and MeTGAN on a dataset with
high cardinality, we used the Loan dataset. A sample size of 150k data points
was selected from the Loan dataset such that it had a sufficiently large number
of total distinct categories across columns (21k) to test the memory efficacy of
MeTGAN. The statistics of the Loan dataset are also shown in Table [

MeTGAN: Memory efficient Tabular GAN 5

Name|Train/Test|#N|#C|#Categories
Adult| 26k/6.5k 6 9 104
News 31k/8k 45 | 14 28
Loan | 120k/30k 11 | 10 21k

Table 1: Dataset statistics. #N and #C represent the number of continuous
(numerical) and categorical columns in the dataset respectively. #Categories is
the total number of categories across all the categorical columns.

Additional details of the features from each dataset used in our experiments
and the target feature used for the Machine Learning Efficacy tests are described
in our Github repository.

5 Metrics

5.1 Non-Privacy Metrics

Memory Requirements - The GPU memory requirements of the MeTGAN
and CTGAN models on the Loan dataset is one of the key metrics.

Machine Learning Efficacy - As defined in [19]. For the Adult dataset, we
used Logistic Regression (LR) and Random Forest Classifier (RFC) and for News
and Loan we used Random Forest Regressor (RFR) and ElasticNet (ENet). In
both cases, we reported the difference (AF1 or AMSE) of the ML model. The
smaller the difference, the better the ML efficacy.

Statistical Similarity - The statistical closeness between the two datasets is
shown using the Chi-squared (CS) test and the Kolmogorov—Smirnov (KS) test.

5.2 Privacy Metrics

DCR - [10] introduced a metric - Distance to Closest Record (DCR) which we
use in this paper as well to measure privacy.

Categorical CAP (CCAP) - This is based on the Correct Attribution Proba-
bility privacy method. It requires a set of key columns and a sensitive column for
a dataset. We use the [I] package for the implemtation. The closer the CCAP
score is to one, the better is the privacy. CCAP was used for the Adult data.

NumericalLR (NLR) - This method also requires a set of key columns and
a sensitive column. We use the [I] package for the implemtation. Again, here
higher the score (closer to 1), the better is the model performance. NumericalLR
was used for the News and Loan datasets.

6 S. Singh et al.

6 Results and Discussion

We study five GAN baselines, on Adult and News datasets, to compare the
performance of the proposed MeTGAN model. Additionally, MeTGAN and
CTGAN were studied on the Loan dataset keeping a focus on memory usage.
We used an NVIDIA Quadro RTX 6000 for all our experiments. The training
parameters for all the models and the key and sensitive columns required for
CCAP and NLR metrics are mentioned in our Github repository.

The performance of the models on the Adult dataset is reported in Table [2}
In terms of ML Efficacy, except medGAN, all models have a reasonably good
performance. The MeTGAN model stands out in this test among all the models.
TGAN performs well particularly in the CS and KS tests while MeTGAN and
CTGAN have the next best performance. MeTGAN has a good Categorical CAP
score and is comparable to CTGAN. Overall, CTGAN and MeTGAN are the
most balanced methods across all the metrics for synthetic data generation on
this dataset, with MeTGAN performing slightly better on ML Efficacy than
CTGAN.

Table [3] shows the performance of the models on the News dataset. On this
dataset, CTGAN has the best ML Efficacy performance. MeTGAN and medGAN
are next with reasonably good performance as well. c(WGAN does not support
regression tasks so it is not evaluated on the News dataset. medGAN has a
good KS test score on this dataset. MeTGAN has a higher DCR-mean, and
the relatively good NumericalLR score confirms that the higher DCR-mean is a
positive sign. Although medGAN has a high KS test score, the low NumericalLR,
score indicates that it somehow leaks information. Overall, again both CTGAN
and MeTGAN have a stable performance.

Table [shows the results of CTGAN and MeTGAN on the Loan dataset.
It can be seen from the AMSE score that both CTGAN and MeTGAN do not
perform well on this dataset in terms of ML Efficacy score. In the ML Efficacy
metrics, MeTGAN outperforms CTGAN on the Random Forest regressor test
and marginally loses out on the ElasticNet test. CTGAN has a slightly better
performance on the CS and KS tests. In the privacy metrics, the performance of
CTGAN and MeTGAN are very close to each other.

The main thing to note however is that for this high cardinality categorical
dataset, the MeTGAN model requires 80% less memory (from Table [5) to give
a similar performance as CTGAN. The use of the sparse layers for the model
resulted in memory-efficient matrix operations over the sparse conditional vector.
Additionally, removing the first residual layer from the generator helped to reduce
the size of the input to the next layer. These two reasons primarily caused the
reduction in GPU memory usage while not hampering the performance of the
model significantly. Overall, MeTGAN performed at par or even marginally better
than other models across different metrics on all the datasets.

MeTGAN: Memory efficient Tabular GAN 7

Dataset | Model AF1-LR|AF1-RFC|CS test|KS test DCR-mean|DCR-std | CCAP
MeTGAN [0.013 0.028 0.987 0.813 1.711 0.706 0.300
CTGAN [0.030 0.035 0.970 0.773 1.782 0.732 0.310

Adult TGAN 0.085 0.087 0.990 0.917 1.742 0.727 0.304
cWGAN [0.051 0.030 0.906 0.596 1.890 0.619 0.232
medGAN [0.719 0.725 0.872 0.109 2.246 0.975 0.035
tableGAN[0.036 0.052 0.976 0.610 1.826 0.537 0.303

Table 2: Results on the Adult dataset

Dataset|Model AMSE-RFR|AMSE-ENet|CS test|KS test| DCR-mean|DCR-std | NLR
MeTGAN [154 125 NA 0.915 3.041 5.433 0.263
CTGAN [87 106 NA 0.910 2.903 5.430 0.279

News |[TGAN 408 2491 NA 0.902 2.787 5.389 0.267
medGAN [128 126 NA 0.965 [2.026 5.436 0.182
tableGAN|[540 262 NA 0.585 2.741 5.235 0.217

Table 3: Results on the News dataset

Dataset|Model AMSE-RFR|AMSE-ENet |CS test|KS test| DCR-mean|DCR-std| NLR
Loan |MeTGAN|64015 23320 0.632 |0.716 _ [3.007 1.234 0.093
oan 'GTGAN (74323 23082 0.656 |0.755 |2.746 2.626 0.115

Table 4: Results on the Loan dataset

Dataset | Model GPU Mem.
MeTGAN|[3.2 GB
CTGAN [16.3 GB

Table 5: GPU Memory usage on the Loan dataset

Loan

7 Conclusion and Future Work

In this paper, we propose MeTGAN, a memory-efficient approach of synthetic
tabular data generation, that performs at par with other recent GAN approaches.
In addition, for large datasets, MeTGAN considerably reduces the memory
consumption without any significant degradation in performance. Reducing
memory footprint of models has recently gained popularity, like [16] for large
pre-trained language models, [12] for speech recognition, [I7] for computer vision,
but not much work has been done in the domain of synthetic tabular data
generation. As per our knowledge, MeTGAN is the first work in this direction.
Additionally, for future work, it can be seen that on a high cardinality categorical
dataset like the Loan dataset, both CTGAN and MeTGAN models have limited
efficacy. With the current architecture of these models, they are not yet capable
of capturing the distribution well when there are a large number of columns and
categories. Certain architectural changes are required that can better capture
the nuances in variance. Future work directions could include the intersection
of these aspects i.e., improving the memory footprint of such algorithms and/or
making more real-world usable models.

8

S. Singh et al.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

Data to AI Lab, M.: Sdmetrics (2020), https://github.com/sdv-dev/SDMetrics
Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W.F., Sun, J.: Generating multi-
label discrete patient records using generative adversarial networks. In: Proceedings
of the 2nd Machine Learning for Healthcare Conference. vol. 68. PMLR, (2017)
Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., Yu, T.: Differentially private
spatial decompositions. In: 2012 IEEE 28th International Conference on Data
Engineering. pp. 20-31 (2012). https://doi.org/10.1109/ICDE.2012.16
Engelmann, J., Lessmann, S.: Conditional wasserstein gan-based oversampling of
tabular data for imbalanced learning. Expert Systems with Applications 174 (2021).
https://doi.org/10.1016/j.eswa.2021.114582

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial networks (2014)

Gulrajani, 1., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved
training of wasserstein gans. In: Proceedings of the 31st International Conference on
Neural Information Processing Systems. p. 5769-5779. NIPS’17, Curran Associates
Inc., Red Hook, NY, USA (2017)

Kohavi, R., Becker, B.: Adult data set (May 1996), https://bit.1ly/3v3VDIj
Lin, Z., Khetan, A., Fanti, G., Oh, S.: Pacgan: The power of two samples in
generative adversarial networks. IEEE Journal on Selected Areas in Information
Theory 1, 324-335 (2020)

Mottini, A., Lheritier, A., Acuna-Agost, R.: Airline passenger name record genera-
tion using generative adversarial networks. CoRR abs/1807.06657 (2018)

Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., Kim, Y.: Data synthesis
based on generative adversarial networks. Proc. VLDB Endow. 11(10), 1071-1083
(Jun 2018). https://doi.org/10.14778/3231751.3231757

Patki, N., Wedge, R., Veeramachaneni, K.: The synthetic data vault. pp. 399-410
(10 2016). https://doi.org/10.1109/DSAA.2016.49

Peng, Z., Budhkar, A., Tuil, I., Levy, J., Sobhani, P., Cohen, R., Nassour, J.:
Shrinking bigfoot: Reducing wav2vec 2.0 footprint (2021)

Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks (2016)

Reiter, J.: Using cart to generate partially synthetic, public use microdata. Journal
of Official Statistics 21 (01 2005)

Sanh, V., Debut, L., Chaumond, J., Wolf, T.: A proactive intelligent decision
support system for predicting the popularity of online news. Proceedings of the
17th EPIA 2015, Coimbra, Portugal (2015)

Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 (2019)

Tan, M., Le, Q.V.: Efficientnetv2: Smaller models and faster training (2021)
Toktogaraev, M.: Should this loan be approved or denied?, https://bit.ly/
3AptJaW

Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular
data using conditional gan. In: NIPS (2019)

Xu, L., Veeramachaneni, K.: Synthesizing tabular data using generative adversarial
networks. arXiv preprint arXiv:1811.11264 (2018)

Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes:
Private data release via bayesian networks

Zhao, Z., Kunar, A., der Scheer, H.V., Birke, R., Chen, L.Y.: Ctab-gan: Effective
table data synthesizing (2021)

https://github.com/sdv-dev/SDMetrics
https://doi.org/10.1109/ICDE.2012.16
https://doi.org/10.1016/j.eswa.2021.114582
https://bit.ly/3v3VDIj
https://doi.org/10.14778/3231751.3231757
https://doi.org/10.1109/DSAA.2016.49
https://bit.ly/3AptJaW
https://bit.ly/3AptJaW

	MeTGAN: Memory efficient Tabular GAN for high cardinality categorical datasets

